Т. 8 Корпускулярные свойства света.

- 1. Экспериментальные данные о внешнем фотоэффекте. Законы внешнего фотоэффекта.
- 2. Гипотеза о световых квантах. Уравнение Эйнштейна.
- 3. Эффект Комптона.
- 4. Давление света.

(Электромагнитные волны с λ в интервале от 0,36 мкм. до 0,78 мкм. оказывают действие на зрительные органы человека и называются световыми волнами или светом.)

Последовательное решение проблемы теплового излучения a.r.m. оказалось возможным лишь после того, как М. Планк отказался от классических представлений о непрерывном процессе излучения электромагнитных волн веществом.

Гипотеза о том, что и световые волны, являясь частным случаем волн электромагнитных, испускаются и поглощаются определенными порциями - квантами, высказанная Эйнштейном, нашла свое подтверждение и развитие при объяснении ряда явлений, в частности:

- 1. фотоэлектрического эффекта;
- 2. эффекта Комптона;
- 3. давления света и др.

Открытие фотоэффекта относится к освещении ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, увеличивается яркость электрической искры.

Вслед за Герцом это явление исследовали другие ученые, в точности Столетов.

Схема опытов Столетова

(Рисунок)

Основные результаты исследований Столетова:

- 1) сила фототока \sim интенсивности света. ($i_{\Phi}{}^{\sim}I$)
- 2) под действием света металл теряет отрицательно заряженные частицы.
- 3) $\frac{q}{m}=1.759*10^{11}\ {
 m K}$ л/кг, следовательно, эти частицы $ar{e}$.

Явление вырывания \bar{e} из твердых и жидких веществ под действием света получило название внешнего фотоэффекта.

Схема современной установки для исследования фотоэффекта имеет следующий вид:

(Рисунок)

Явление в сильной степени зависит от чистоты поверхности катода К.

Некоторые характеристики фотоэффекта:

а) (Рисунок)

1) независимо от интенсивности падающего света вплоть до величин 10^{-10} Вт/м² время нарастания фототока с момента начала облучения до установившегося значения составляет $\approx 10^{-9}$ с.

б) (Рисунок)

- 2) для заданной частоты падающего света существует вполне определенная максимальная кинетическая энергия фотоэлектронов.
- 3) значение $\varepsilon_{\rm K}$ $_{max} = e * u_{\rm 3ag}$ не зависит от интенсивности падающего света.
- 4) $\varepsilon_{\kappa max} \sim \nu \text{ M tg } \varphi = const.$
- 5) $\nu_{OA} \neq \nu_{OB}$; ν_0 пороговая частота, при которой фототок прекращается.

в) (Рисунок)

 $I_{\text{\tiny Hac}}$ определяется количеством испущенных \bar{e} в единицу времени.

$$I_{\text{Hac}} = e * n ; u_3 = \varepsilon_{\text{K} max} / e.$$

- 6) величина фототока насыщения \sim интенсивности падающего света.
- 7) существует задерживающая разность потенциалов, величина которой определяется $\varepsilon_{\kappa\ max}$: $\varepsilon_{\kappa\ max} = \frac{1}{2}*m*v_{max}^2 = e*u_{\rm 3}$, отсюда

 $u_{\text{зад}} = a * (v - v_0)$, где a = const для всех веществ, v_0 зависит от материала излучающей поверхности.

Сформулируем законы внешнего фотоэффекта.

Законы внешнего фотоэффекта

- 1. Максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности.
- 2. Для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота \mathbf{V}_0 света, при которой еще возможен внешний фотоэффект. Величина \mathbf{V}_0 зависит от химической природы вещества и от состояния его поверхности.
- 3. Число фотоэлектронов n, вырываемых из катода за единицу времени, пропорционально интенсивности света (иначе фотон насыщения \sim энергетической освещенности катода).

Фотоэффект практически безиндоциоен ...

Первый и второй законы фотоэффекта нельзя объяснить на основе волновой теории света. По этой теории $I{\sim}A^2$, где А-амплитуда электромагнитной волны, «раскачивающей» \bar{e} в металле. Поэтому свет любой частоты, но достаточно большой интенсивности должен был бы вырывать \bar{e} из металла, что противоречит второму закону внешнего фотоэффекта.

Чем больше интенсивность света, тем большую кинетическую энергию должен был бы получить от него \bar{e} . Поэтому скорость фотоэлектрона должна была бы возрастать с увеличением I. Этот вывод противоречит первому закону фотоэффекта.

В 1905 году Эйнштейн предложил теорию, которая давала объяснение сразу всей совокупности экспериментальных данных о фотоэффекте. Он обобщил высказанную Планком гипотезу о квантовании обмена энергией и предположил, что

- 1) любое электромагнитное излучение существует в виде дискретных порций электромагнитной энергии, названных квантами или фотонами;
- 2) <u>при взаимодействии с веществом фотон ведет себя подобно частице</u> и передает свою энергию не всему веществу в целом, а только отдельным электронам;
- 3) существование граничной энергии фотоэффекта обусловлено тем, что для освобождения \bar{e} из вещества ему надо передать некоторое количество энергии, даже если его кинетическая энергия при выходе из вещества равна нулю.

$$A_{\text{\tiny RMX}} = h * \nu$$

(2) $h*\nu=A_{\text{вых}}+\frac{1}{2}*m*v_{max}^2$ - формула сохранения энергии(уравнение Эйнштейна).

Из уравнения Эйнштейна непосредственно видно, что

1) скорость фотоэлектрона возрастает с увеличением частоты света и не зависит от его интенсивности(поскольку ни $A_{\text{вых}}$, ни ν не зависят от интенсивности света).

Этот вывод соответствует первому закону фотоэффекта.

2) Согласно (2) $E_{\text{кин}}$ фотоэлектронов с уменьшением частоты света уменьшается. При некоторой достаточно малой величине $\nu = \nu_0$ $E_{\text{кин}}$ =0 и фотоэффект прекратится. Это имеет место при

$$h * v_0 = A_{\text{BMX}}$$

т. е. когда вся энергия фотона расходуется на совершение работы выхода \bar{e} . Тогда

(3)
$$\nu_0 = \frac{A}{h} \left(\text{или } \lambda_0 = \frac{h*e}{A} \right)$$

Формулы (3) определяют красную границу фотоэффекта. Из формулы (3) следует, что $\nu_0(\lambda_0)$ зависит от работы выхода(от мону-иола фотокатода).

3)
$$h * v - A_{\text{BMX}} = \frac{1}{2} * m * v_{max}^2 = e * u_3.$$

$$u_3 = \frac{h}{g} * v - \frac{A_{\text{BMX}}}{g} = \frac{h}{g} * (v - v_0); \ a = \frac{h}{g} = const.$$

4) Теория Эйнштейна объясняет также $I_{\rm Hac}{\sim}\Phi$. Действительно, величина светового потока Φ определяется числом квантов света, падающих на поверхность в единицу времени. Вместе с тем, число освобождаемых \bar{e} должно быть \sim числу падающих фотонов.

Необходимо заметить, что лишь малая часть фотонов передает свою энергию фотоэлектронам. Энергия остальных фотонов затрачивается на нагревание вещества, поглощающего свет, т. е. переходит во внутреннюю энергию.

<u>Гипотеза Эйнштейна о распространении света в виде дискретных частиц</u> (фотонов) была подтверждена рядом опытов (Иоффе, Боте и др.).

Энергия фотонов $\, arepsilon_0 = h * {\it v}. \,$ Вместе с тем из закона взаимосвязи массы и энергии следует, что $\, arepsilon_0 = m * c^2 \,,\,$ где

$$m=rac{h*
u}{c^2}$$
 -релятивистская масса фотона

 m_0 для фотонов не существует.

Так как фотон движется со скоростью света, то он обладает импульсом:

$$p = m * c = \frac{h*v}{c} = \frac{h}{\lambda}$$
.

Таким образом, теория фотоэффекта Эйнштейна снова вызвала к жизни представление о свете, как о потоке частиц - по крайней мере, при взаимодействии света с атомными электронами.

Особенно отчетливо проявляются корпускулярные свойства в явлении, которое получило название эффекта Комптона (американский ученый, 1924 г.).

(*) ... то рассеянный этим веществом свет имеет всегда большую λ.

Описывая эксперимент Комптона, для простоты будем считать электроны свободными. Из экспериментов по фотоэффекту известно, что электроны в веществе находятся в связном состоянии, причем энергии связи имеют порядок нескольких электроновольт. В своем эксперименте Комптон использовал фотоны рентгеновских лучей с энергией 17,5 кэВ. Поскольку эта энергия намного превышает энергию связи электронов, не будет большой ошибки в предположении о том, что электроны свободны.

Пусть фотон с энергией h * v падает на покоящийся электрон.

(Рисунок)

Комптон установил, что

$$\Delta \nu = \nu' - \nu = f(\theta)$$

$$\Delta \lambda = 2 * k * \left(\sin\frac{\theta}{2}\right)^2$$

k=0.0241 Å.

Удар между \bar{e} и фотоном упругий, т. е. к нему применимы законы сохранения:

1. закон сохранения энергии:

(1)
$$h * v + m_0 * c^2 = h * v' + m * c^2$$

$$\mathbf{m} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

2. закон сохранения импульса:

$$\overline{p} = \overline{p}' + \overline{m * v}$$

(2)
$$(m*v)^2 = (\frac{h*v}{c})^2 + (\frac{h*v'}{c})^2 - 2*\frac{h^2*v'*v}{c^2}*\cos\theta$$

Решим систему уравнений (1) и (2):

$$h * v + m_0 * c^2 - h * v' = \frac{m_0 * c^2}{\sqrt[2]{1 - \frac{v^2}{c^2}}}$$

$$h * (\nu - \nu') + m_0 * c^2 = \frac{m_0 * c^2}{\sqrt[2]{1 - \frac{\nu^2}{c^2}}}$$

$$h^2 * (\nu - \nu')^2 + 2 * h * (\nu - \nu') m_0 * c^2 + m_0^2 * c^4 = \frac{m_0^2 * c^4}{1 - \frac{\nu^2}{c^2}}$$

(3)
$$h^2 * (v^2 - 2 * v * v' + {v'}^2)^2 + 2 * h * (v - v') m_0 * c^2 = \frac{m_0^2 * c^2 * v^2}{1 - \frac{v^2}{c^2}}$$

$${}_{(4)}\frac{m_0^2*v^2}{1-\frac{v^2}{c^2}} = \frac{h^2*v^2}{c^2} + \frac{h^2*v'^2}{c^2} - 2*\frac{h^2*v'*v}{c^2}*\cos\theta$$

Подставим (4) в (3)

$$h^{2} * \nu^{2} - 2 * h^{2} * \nu' * \nu + h^{2} * \nu'^{2} + 2 * h * m_{0} * c^{2} * (\nu - \nu') = c^{2} \left(\frac{h^{2} * \nu^{2}}{c^{2}} + \frac{h^{2} * \nu'^{2}}{c^{2}} - 2 * \frac{h^{2} * \nu' * \nu}{c^{2}} * \cos \theta\right)$$
:

$$h^{2} * \nu^{2} - 2 * h^{2} * \nu' * \nu + h^{2} * {\nu'}^{2} + 2 * h * m_{0} * c^{2} * (\nu - \nu') = h^{2} * \nu^{2} + h^{2} * \nu'^{2} - 2 * h^{2} * \nu' * \nu * \cos \theta$$
.

$$v - v' = \frac{h}{m_0 * c^2} * v' * v * (1 - \cos \theta);$$

$$\nu=\frac{c}{\lambda};$$

$$\nu' = \frac{c}{\lambda'}$$
;

$$v - v' = c * \frac{\lambda - \lambda'}{\lambda * \lambda'} = c * \frac{\Delta \lambda}{\lambda * \lambda'};$$

Решая систему уравнений (1), (2) для определения ν' получим выражение:

$$h * \nu' * \nu * (1 - \cos \theta) = m_0 * c^2 * (\nu - \nu')$$

Вводя вместо частоты длину волны, т. е. используя соотношение $\nu = \frac{c}{\lambda}$;

$$u' = \frac{c}{\lambda'}$$
 и обозначения $\nu - \nu' = \Delta \nu; \ \lambda - \lambda' = \Delta \lambda, \$ найдем

$$\frac{h*c^2}{\lambda*\lambda'}*(1-\cos\theta)=m_0*c^2*\frac{c*\Delta\lambda}{\lambda*\lambda'}$$

или окончательно

(3)
$$\Delta \lambda = \frac{h}{m_0 * c} * (1 - \cos \theta) = \frac{2 * h}{m_0 * c} * (\sin(\frac{1}{2} * \theta))^2$$

 $\lambda_k = \frac{h}{m_0*c} = 0.02426 \, \text{Å} \, (2.426*10^{-10} \, \text{cm.})$ - называется комптоновской длиной волны электрона. Это длина волны фотона с энергией, равной собственной энергии электрона m_0*c^2 .

Комптон измерил величину λ' в зависимости от θ для нескольких различных длин волны λ падающих фотонов и получил результат, согласующийся с соотношением (3). Тем самым он продемонстрировал, что фотоны ведут себя подобно частицам не только в фотоэффекте, но и в процессах рассеяния. Эффект, полученный Комптоном в эксперименте по рассеянию рентгеновских лучей, хорошо описывается на основании гипотезы Планка и Эйнштейна.

а) Кроме внешнего фотоэффекта существует также внутренний фотоэффект, наблюдаемый в диэлектриках и полупроводниках. Заключается в перераспределении \bar{e} по энергетическим уровням под действием света и обуславливает увеличение электропроводности вещества.

Используется в фотосопротивлениях, которые применяют в фотометрии.

б) Вентильный фотоэффект наблюдается в области p-n перехода или на границе металл-полупроводник. Заключается в возникновении фото - э. д. с. под действием света.

На вентильном фотоэффекте основано действие фотоэлектрических фотометров (в фотограф. - экспонометров), солнечных батарей.

Среди различных действий света на вещество давление света играет весьма видную роль.

Идея, согласно которой свет должен давить на освещаемые им тела, была высказана еще Кеплером, который видел в ней объяснение формы кометных хвостов. Идея о световом давлении подсказывалась Ньютоновской теорией истечения: световые частицы ударяясь об отражающие или поглощающие их тела должны были бы передавать им часть своего импульса, т. е. производить давление.

На основании элетро-магнитной теории света Максвеллу удалось установить величину светового давления.

Так как свет есть электромагнитная поперечная волна, то падая на поверхность проводника (зеркального или поглощающего тела) он должен производить следующие действия: вектор $\bar{\mathbb{E}}$, лежащий в плоскости освещенной поверхности, вызывает ток в направлении этого вектора;

(Рисунок)

магнитное поле световой волны действует на возникший ток по закону Ампера, так что направление силы совпадает с направлением распространения света. Эта пондеромоторная сила(не совершает работы) приводит к возникновению давления на тело.

Если световой поток направить параллельно поглощающей или отражающей поверхности силы возникать не будут. Сила давления зависит от интенсивности света. Если световые лучи образуют параллельный пучок, давление р по вычислению Максвелла

равняется плотности световой энергии ω , т. е. энергии в единице объема. При этом предполагается, что тело, на которое падает свет, абсолютно черное, т. е. поглощает всю падающую на него световую энергию: $p=\omega$.

Если часть световой энергии отражается, то $p=\omega*(1+\rho)$, где ρ - коэффициент отражения. Для идеальной зеркальной поверхности $\rho=1$ и $p=\omega*2$.

Количество энергии, падающей нормально на 1 см. 2 за 1 с. (освещенность) обозначим через Е. Тогда плотность лучистой энергии $\omega=\frac{E}{c}$, где c - скорость света. Таким образом

$$p = \frac{E}{c} * (1 + \rho).$$

Световое давление было обнаружено на опыте и впервые измерено П. Н. Лебедевым в Москве. Лебедев показал, что свет производит давление не только на проводящие, но и на непроводящие поверхности.

Кроме того, экспериментально Лебедев обнаружил и измерил давление, производимое светом на газы.

В рамках корпускулярной теории света световое давление следует интерпретировать как результат передачи импульса фотонов поглощающей или отражающей стены.

(Рисунок)

Для неупругого удара p = m * v,

для упругого удара p = m * v - (-m * v) = 2 * m * v.

Таким образом, если свет полностью поглощается освещаемой поверхностью, то величина передаваемого импульса $p=\frac{h*\nu}{c}$, если наблюдается полное отражение, то $p=2*\frac{h*\nu}{c}$.

Поток монохроматического света частоты ν , падающий нормально на стенку и приносящий за 1 с. на 1 см. 2 энергию, равную E, содержит N фотонов:

$$N * h * \nu = E$$
.

Импульс, передаваемый фотонами поглотившимися поверхностью

$$N_1 * \frac{h*\nu}{c}$$
;

отразившимися

$$2 * N_2 * \frac{h*\nu}{c}$$
.

Суммарный импульс, переданный стенке, будет

$$N_1 * \frac{h * v}{c} + 2 * N_2 * \frac{h * v}{c} = \frac{h * v}{c} * (N_1 + 2 * N_2) = \frac{h * v}{c} (N + N_2).$$

Тогда

$$\frac{h*v}{c}*N*\left(1+\frac{N_2}{N}\right) = \frac{h*v*N}{c}*(1+\rho) = \frac{E}{c}*(1+\rho),$$

что находится в согласии с формулой Максвелла.

Как бы ни было истолковано явление светового давления в рамках корпускулярной или волновой теории, сам факт его экспериментально установленного существования имеет большое значение. Этот факт доказывает наличие у света не только энергии, но и импульса, что в свою очередь свидетельствует о материальности света, о том, что наряду с веществом свет является одной из форм материи.